The Simulation Model of a complex System: the neural System
Demetrio P. Errigo

Abstract

The object of this study was to create an elemgrebactronic circuit which can produce signals
that are similar to those produced by intracelluland extra-cellular circuits, a hardware that
works autonomously with no need of an externalvso# because it self-creates it. In this paper |
describe an artificial, and/or bionic, neural sttuce formed by the simulation of modular
similar-analogic electronic elements for generatangd/or re-establishing correct communication
between components of a biological structure, irtipalar a nervous System. | present a series of
data, which derive from a simulation of what becsraevery simple electronic and informational
elementary circuit. This circuit is extrapolate@rdn many other circuits which are supported by a
universal model and, working together, give cohtgerswers and are able to help or replace a
neuron or a group of neurons. The simulated stmactncludes a plurality of modular electronic
devices interconnected together to form at least pmir of meshes and is able to generate
analogic electrical signals of various waveformglararious electric powers. | have so realized
an simulator System as a quasi-Boolean net, buttimal only, because the omni-directional
reaction to an operative, at a perturbation levetian, gives origin to different functionalities én
similar structure, which exists in a non-digital yyaor, it might be better to say, which lives in an
analogical quasi-digital way, with molecular codadadecode factors, to which, at present, |
approximate in an quasi-complete way. | have ola@ian almost perfect correlation between
those signals that are generated in nature and éhbsit we have artificially produced. | have
demonstrated that, to build a real and working fécial intelligence, or a particular part of it, we
must preliminarily plan an "opposite-engineeringysg&m that, starting from the biological and
not "vice/versa", can, in the meantime, define"th@w", hoping it becomes even the "why". The
fundamentals ideas that lead to the new electrormétics model construction are examined
either from a theoretical point of view (that i®tbasis for my researches and which describes the
production and the direction bus of the informatsignals) and from the point of view of the
structure realization.
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The Author’s Research Path

From the social System, which is one of the marySystems of the System-universe, | have
extrapolated one only Individual, which is one lod social sub-Systems and | have analyzed one
of his many sub-sub-Systems, namely the nervoue®yBig. 1.
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What | have done is not restrictive as we can asdinat the other sub-sub-Systems behave in the
same way, now that we know, basing on Eh&l-E-I theory Fig. 2), that they are all inter-

connected, so they must use the same communicataies. And therefore, analogous
behavioural keys.
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In Fig. 3 we represent the hypothesis:

» of the neural segmentation;
» of the operative frequencies set choice.

The Figure above follows the actual traditional raagh.

The set of octaves keys on a piano’s keyboardeséh of frequency intervals of the waves used,
obviously with the appropriate associations, coratiams, permutations and dispositions.

Either for assonances and for dissonances.
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This Fig. 4 represents the fortuitous intuition that allowed to build the new model of neural
transmission: the sax-neural coupling analogy.



Fig. 4

And this is the new neural transmission’s modab. 1.

As you can notice it is much more extended tharctimeent in use, because it considers the inertia
in reception and in transmission of what is natueakus the artificial.

If you want to simulate reality, which is analodjand not digital, we must adapt to its needs.

HOPFIELD'S MODEL : NEW MODEL

1. The time and neural activity are non- 1. Thetime and neural activity are non-
continuous. . continuous.

in a reticule form and are connected to each subsets: n transmission (j neurons), n
other. ' reception (m neurons). Both neuron subsets
are connected between them by unidirectional

1

2. The neurons are geometrically arranged 2. The set of 2n neuronsis subdivided into two ,
:

reticule connections. :

1

3. To the m™ neuron a variable 6, = +1 is: 3. To each neuron a variable ¢; = +1 is.
assigned if the neuron is active o6y, = -1 if , assigned if the neuron (of subset j) is active,
it is passive. . (in transmission) and &, = +1 if the neuron |
' (of the subset m) is active (in reception). To!
r each neuron a variable ¢; = -1 is assigned if
\ the neuron (of subset j) is passive and &, = -1
. if the neuron (of subset m) is passive (in,
| reception). The reception frequency is,
' determined by induction  from  the!
! transmission frequency. !

Tab.1- NEURAL TRANSMISSION
(seeFig.6)



In Fig. 5 1 have represented the key tools to perform thrkition:

» the Cubic Matrix algebra [for zero (only one elemeane-two-three dimensions];

* the "De Morgan Plus™ Theorem (for circuits’ sinfations);

* the Plasma-Jet Cone flux.

| had to formulate the Cubic Matrix algebra fonsny Systems of Systems of equations.

It shows an interesting characteristic about thiséfderg’s uncertainty Principle.
This may also allow in general to deal with undeiieed problems in the macro.
The "De Morgan Plus” Theorem is my implementatibthe main theorem.

The Plasma-Jet Cone flux comes from my studies agneto-fluid-dynamics.

As you can notice, the construction of a modelisags math.
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The simulation Fig. 6) was achieved following the hypothesis of an itput-put model among
sets of neurons in communication.




The intersynaptic spaced-if. 7) is here very simplified and doesn’t show the pne® of
mediators of communication, such as the astrocygtes cells.
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Fig. 7

These cells are schematized in their behaviour fathematical simulation in the space-time.
The space-time choice was made because in thigrobsee can’t pass over neither the theory of
relativity nor (above all) the quantum mechankag. 8.

The ball that you can see on the right is the agteo
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simulation astrocite

inierpenapiic 4-dimensional space
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The new explanatory moddFiy. 9) for the neural communication is the one represgint this
Figure n°, in which | show the various levels of/pical-mathematical study.
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In Fig. 10 | show what | have obtained, that is the elemgntacuit and the structural-functional

neural analogy.
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Another step was to obtain this other analogy: #en-Linear Accelerator analogy (non-
relativistic case). We can see in the Figure thet@nalogy either as a structure and as a fancti
between thé&-1-N-A-C and a neurorfig. 12.
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Fig. 12

A further step was to make a geometric simulatiod a hypothesis of a brain’s behaviour
following an internal or an external stimulus: thrain-ellipsoid of rotation analog¥ig. 13.

In the central Figure deriving from my simulatiomse can see the ellipse that is run through by a
stimulus involving a range of areas of the braine Wave to notice that the ellipse is the

projection, in the three-dimensional space, ofaigit line in the space-time, which is run over in
a not-uniform way.




This shows how the various areas of the brain emeive an informative communication in
relatively different times and so also assimilatamgl reacting in different timeBig. 14.
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We can consequently think valid, in particular harbady’s areas, the non-local principle and not
the possibility of entanglement (but not the cettapf thisnon-possibility. This may be because
Life works at negative entropy (or negentropy),tjas an adrift of Schrodinger’s statistic
thermodynamicdgrig. 15.

Entropy S = k In(x}

Negentropy ns = -k in{x)

Fig. 15
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And this is the first mathematical model obtainedthe study of the whole neural communicative
behaviourFig. 16.
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Thanks to all this, | built this final model that ieally complicated which has to be solved with a
System of differential equations at partial defived.Fig. 17.
| tried to overcome this difficulty including a seempirical formula that | had made for other.
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This final model, as | found out later, in its pnghary hypotheses, can also make possible the
study of the performances of the Power Managenmeséial Systemd:ig. 18.
In fact, the interiority of each individual influees and is influenced by its external environment.
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Fig. 18
In the end, this neural study is focused on thst futcomes presented, on the distribution of

circuits to be analyzed and on this summary candtfe left), with the goal of a bionic simulation.
Fig. 19.
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The outcomes can be easily seen.
Here | show the striking coincidences among theaioellular signalsKig. 20).
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1pA

Fig. 20

And in thisFig. 21, those among the extra-cellular signals.

extra-cellular signals
Bt ipsdeediion | NATURAL

|comparison "extra” |

voltages

Fig. 21

Ultimately, | simulated a series of prototypes, andll the previous models, the essential work is
in accordance with these assumptions:
* we have the configuration of balance for the Naup;
e we can insert in it switches and replace the genesistances with appropriate resistors,
which run in fixed frequency-fields;
* opening and closing the circuits, we can createctmalitions of dis-equilibrium, that give
different productions of currents, which, each urn{ generates various signals in
transmission.

15



The various signals must then be put togethergplagnlarged and transmittédg. 22.
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gives origin to those energy emissions seenabove
Fig. 22

| can describe this very simplified prototype modslich consists of a single sub-stratum among
80 (40 + 40) sub-strata, that at its turn becon&sagle element of an hexagoniaig. 23.

group, and this single element has 5 signals idsté27.

| have obtained an almost perfect correlation betwe signals that are generated in nature and
those that | have artificially produced. Analyzitige data, | have noticed that equal signals
obtained among the signals generated in naturehersg that | have artificially produced can be
compared, either for values and for developmentéqre and post-synaptic ones.

In fact, the presented bionic simulated structumy@s to be analogous to a set of staminal cells,
and moreover, with the opportune modificationshef tesistance elements, it is even analogous to
a set of glial cells.

16
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Fig. 23

An example of simulated artificially analogical sais.Fig. 24.

Using the Fourier’'s analysis, in series, we can alestrate that, for every sequence of bionic
emission, there are various harmonics which ardasito those from natural neurons.

My results concerning the third component (the eorsér):

This third component is a particular component lmoh all the other simple intracellular signals,

defined by their resemblance to physiologic intHata signals, are combined in order to produce
extra-cellular signals.
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In Fig. 25 we can see the potential and intensity curreneldgwment and the development of the
Fourier series, of the same component. The frequdistribution is clearly optimal for the bionic
dialogue among, not only the neuron (the signgeidy but also among all the other cells nearby,
creating, in this way, synchronicity among the iot@nections.

If up to some years ago we believed that the nenf@amation transmission occurred through the
pre-post-synaptic connection between two neurodstizet nothing was interposed, we have later
noticed that in reality it seems to occur in preseof glial cells that not only incorporate thee’

of a specific neuron considering theost of the following neuron, but also they are
interconnected with many others that surround them.
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| had to notice this when in my simulations | ewkd the upper harmonicas of a transmission,
and | could calculate the quantitative of energat thas apparently dispersing, looking redundant
considering a single neuron-target.
It was then that | understood that the apparemedsson was like a cloud, that | simulated like the
cone of a plasma-jet, which collides with a newatround, and in this way all what was
considered the boundary was informed of what haggemn and about the fundamental neuron-
target.
| can demonstrate that, at present, | am able to:

* build signals similar to physiological ones;

* have a bionic dialogue;

* build "three-D" structures, ever more and more compleg. 26.
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Concluding Considerations
As we can see the object of this study has a higbigplex Systemic content and contributes to
Systemics in general and, in particular, to theofaing sectors:

* Cybernetics, Automata, Robotics;

» Systemics and Medicine.
The object of this study was to simulate an eleamnelectronic circuit which could produce
signals that were similar to those produced
by intracellular and extra-cellular circuits.
| planned and simulated a new type of neural trég&son model that considers every single
neuron as the receiver of signalsand as the generator (in answer) nbfsignals partly in
traditional logic and partly in fuzzy logic.
The results, obtained in the course of several mxeats of computerized circuit simulations, are
comparable to those produced by neural circuitsatedescribed in the literature.
Based on these results | think that we can crdated(artificial) cells which can functionally act
like stem, glial, or other kinds of biologic cells.
| have at last obtained a fusion between Neurosenand Robotics that lead to
Cyberneurophysiologgnd from this tdionethics (i.e. Bionics and Ethics)
Stated the outcome of this work, even if with atrexely simplified model of a single circuit of a
single form-circuit, the theoretic bases are, a& thoment, the most completely possibly
configured. I'm also convinced that today the teabgical research can easily supply the
instruments to assemble and use it.
We know that the mass is one of the ways to beegthergy that is constantly connected to those
processes that, at a microscopic level, occurs gnadstract -at a dual character- separated
entities that show aténdency to find themselvesi a determined place with a certateridency
to happening
This occurs with the “waves of probabilities” whiotpresent the possibility of interconnections.
There are no separate nor even separable “fundahi@itks”, but there is “only” a complex net
of relations among the different parts. We are mgvwithin the world of the relational
complexity.
But we have also the problem of the non-linearitych is a characteristic of the chaotic world. It
often happens that deterministic simple equatiars groduce unexpected behaviours. And also
that a complex and apparently chaotic behaviourgdamorigin to ordered structures.
In an unstable System, little changes can produstearige” effects for feedback, self-
reinforcement and self-powering processes.
The non-linear equations do not allow making exaetictions, but not even linear equations can
give exact result and the measurements that neetthdoconditions at the limits, are subject to
measurement or reading errors.
From the quantitative analysis and from the measueehave to move to the qualitative analysis
and to the topologic characteristics. Resolvingtlal problems in a structural analogy with the
space or the space-time is for sure a good measuhe knowledge of the relationship with the
truth.
Just in the sense that a unitary research in tidved the physics must start from chaos and
complexity to go back (in a narrower range) to goantum and relativistic “classic” conceptions
till analytical mechanics.
With the simulations described in this Paper, legavplain or at least partial answer to some of
these questions.
The humanSystem is an autopoietic highly complex Systens #elf organized in a way that the
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totality is more of the sum of the parts as it pdeg a myriad of potentialities offered by the
different relations and, at the same time, thelitgtas also less of the sum of the parts, as it
concretizes only one of the potentialities offebgdhe different relations.

Probably it partially activates them serially, iraodifying itself temporarily in parallel. It is a
System whose study needs three epistemologicalotations: an absolute time doesn't exist, an
absolute space doesn’t exist nor an absolute cesiiich can be theource(that irradiates) or the
sink (that absorbs).

A System in which everything is interconnectedeirglated, depending from (i.e. perturbed), and
influential on (perturbing). A System rich in seakedifferent complex and chaotic sub-Systems. It
is the System of our life that continuoustypves towardandinto the chaos just to order it.

The future consists of probabilities and only tmesgnt choice carry out a specific one and the
scenario is purely dynamic. In this myriad of ogpaities and solutions, Chaos is no more that a
summary of dynamic equilibriums sequences.

When a System lacks of balance, tends to get acoefiguration at a different energetic value.
We can notice this in the self-regulating “biolagicSystem.

The organism, just for its structure, is a selfulagng System. It has a feed-back control System
at least of the second order. In my researchesunaad the human body as a geometric structure
with the same morphology of the universe. The comigaiive biological signals move inside it
essentially like the photons outside. We know faareple that the intersynaptic exchange occurs
through matter, energy and information.

My neurons set neither can create matter nor cegive or transmit it, and so it by-passes this
type of exchange, i.e. it is planned for immediatutching informations and energy just before
the source of the transmitter-neuron and for givinfprmations and energy just after the
reception-sink of the receiver-neuron.

Biologically the neuron [whose axon works in an lagaus way to the LINAC (linear
accelerator)] is characterized by an enormous seiifaorder to facilitate the exchanges.
Artificially this can be carried out only increagithe number of the probes in reception or in
transmission, articulating their mutual relatioqshand the most possible facilitating the coding.
The cards, that | planned, completely simulatedifferent types of circuit (i.e. from the divergent
to the convergent, from the recurrent to the paball

They can also be connected with other similar ¢doateing regular polygonal groupings (from 3
till 8 sides) which can be combined linearly, pldpand spatially.

In this paper, the physical objects, like the bgatal ones, are substituted in the simulation with
other physical (specifically artificial) devices.

As we can easily notice, there is a remarkableaid@mce with the real situation if we consider
the paths that link the nervous centres. Obviowsycan’t yet transform the different neuro-states
(which are still increasing and the more and mpexsic) in psycho-state3hat is why we aren’t
able to generating, as an example, the conscience.

Personally and for the moment, | have only obtaitiedpossibility to create an inter-connectible
hardware with similar elementhat works without any software introduced from theside but
that is self-controlling and self organizing.
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